organic compounds

6358 measured reflections

 $R_{\rm int} = 0.014$

2662 independent reflections

2624 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-tert-Butyl-2-methylpropanamide

Kelly A. Kluge, Diana Fridyland, Cora E. MacBeth* and Kenneth I. Hardcastle

Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322, LISA

Correspondence e-mail: cora.macbeth@emory.edu

Received 21 June 2011; accepted 18 July 2011

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; R factor = 0.035; wR factor = 0.106; data-to-parameter ratio = 14.7.

The title compound, C₈H₁₇NO, crystallizes with two independent molecules in the asymmetric unit. In the crystal, intermolecular N-H···O hydrogen bonding is observed between neighboring molecules, forming continuous molecular chains along the *c*-axis direction.

Related literature

For the synthesis of the title compound, see: De Kimpe et al. (1978); Christensen et al. (1989); Yasuhara et al. (2000); Li et al. (2003). For its use as a ligand in Zr and Ti complexes, see: Li et al. (2003). For background to the coordination modes of carboxamides, see: Lee & Schafer (2007).

Experimental

Crystal data

C₈H₁₇NO $M_r = 143.23$ Monoclinic, P21 a = 9.0378 (6) Å b = 11.3939 (8) Å c = 9.5390 (6) Å $\beta = 106.133 (3)^{\circ}$

 $V = 943.60 (11) \text{ Å}^3$ Z = 4Cu $K\alpha$ radiation $\mu = 0.51 \text{ mm}^-$ T = 173 K $0.31 \times 0.20 \times 0.12~\text{mm}$

Data collection

```
Bruker APEXII CCD
  diffractometer
Absorption correction: multi-scan
  (SADABS; Bruker, 2008)
  T_{\rm min} = 0.858, T_{\rm max} = 0.941
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.035$	H-atom parameters constrained
$wR(F^2) = 0.106$	$\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.00	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$
2662 reflections	Absolute structure: Flack (1983),
181 parameters	812 Friedel pairs
1 restraint	Flack parameter: 0.3 (2)

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1A \cdots O2$	0.88	2.03	2.8880 (16)	166
N2 - H2A \cdots O1^{i}	0.88	2.10	2.9735 (16)	169

Symmetry code: (i) x, y, z + 1.

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

We acknowledge the Emory University Center for X-ray Crystallography for assistance with data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2438).

References

- Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA
- Christensen, D. & Jorgensen, K. A. (1989). J. Org. Chem. 54, 126-131.
- De Kimpe, N., Verhe, R., De Buyck, L., Chys, J. & Schamp, N. (1978). Org. Prep. Proc. Intl. 10, 149-156.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Lee, A. & Schafer, L. L. (2007). Eur. J. Inorg. Chem. pp. 2243-2255.
- Li, C., Thomson, R. K., Gillon, B., Patrick, B. O. & Schafer, L. L. (2003). Chem. Commun. pp. 2462-2463.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Yasuhara, T., Nagaoka, Y. & Tomioka, K. (2000). J. Chem. Soc. Perkin Trans. 1, pp. 2901–2902.

supplementary materials

Acta Cryst. (2011). E67, o2143 [doi:10.1107/S1600536811028947]

N-tert-Butyl-2-methylpropanamide

K. A. Kluge, D. Fridyland, C. E. MacBeth and K. I. Hardcastle

Comment

Carboxamides can be deprotonated to form monoanionic amidate ligands. These species can coordinate to transition metal ions through a variety of different coordination modes, including monodentate and bidentate coordination modes, and therefore are coordinatively versatile ligands (Lee & Schafer, 2007). The ease of synthesis of carboxamides make them attractive ligands for a variety of transition metal mediated catalytic reactions, see: Li *et al.* (2003) and Lee & Schafer (2007). Although the synthesis of this compound has been previously described, its solid-state structure has not been reported. The two molecules (A and B) of *N-tert*-butyl-2-methylpropanamide (Fig. 1) are stabilized by intermolecular N—H···O hydrogen bonds (Table 1, Fig. 2).

Experimental

The title molecule was synthesized using a modified literature procedure (Li *et al.*, 2003). Under a nitrogen atmosphere, a 100 ml round bottom flask was charged with 50 ml of dichloromethane, 4.31 ml (41.0 mmol) *tert*-butylamine, 8.55 ml (61.5 mmol) of triethylamine and a stir bar. The solution was cooled to 0 °C and 5.20 ml (49.2 mmol) of isobutyryl chloride was added dropwise. The solution was slowly warmed to room temperature overnight. The resulting pink solution was extracted three times with 50 ml of 0.10 *M* HCl. The organic layer was dried over anhydrous magnesium sulfate, filtered, and concentrated to dryness to yield the desired product in 60% yield. X-ray quality crystals were obtained by slowly evaporating a chloroform solution of the product. The spectroscopic data (NMR, IR, and ESI-MS) match well with the reported values (Li *et al.*, 2003).

Refinement

The structures were solved using Direct Methods and difference Fourier techniques (*SHELXTL*, V6.12) (Sheldrick, 2008). Hydrogen atoms were added with the HFIX command. These were included in the final cycles of least squares refinement, with isotropic U^{ij} 's that were determined by the riding model. All non-hydrogen atoms in the main residues were refined anisotropically, but residual solvent molecules in the unit cells were refined isotropically. Structure solution, refinement, and generation of publication materials were performed by using *SHELX*, V6.12 software.

Figures

Fig. 1. Molecule A and Molecule B of *N-tert*-butyl-2-methylpropanamide. H atoms except H1A and H2A were omitted for clarity. Thermal ellipsoids are drawn at 50% probability.

Fig. 2. Molecular packing and hydrogen bonding (dashed lines) network of N-tert- butyl-2methylpropanamide viewed down the b axis.

F(000) = 320

 $\theta = 4.8-69.1^{\circ}$ $\mu = 0.51 \text{ mm}^{-1}$ T = 173 KBlock, colourless $0.31 \times 0.20 \times 0.12 \text{ mm}$

 $D_{\rm x} = 1.008 {\rm Mg m}^{-3}$ Melting point: 393 K

Cu K α radiation, $\lambda = 1.54178$ Å Cell parameters from 4549 reflections

N-tert-butyl-2-methylpropanamide

Crystal data
C ₈ H ₁₇ NO
$M_r = 143.23$
Monoclinic, P21
Hall symbol: P 2yb
<i>a</i> = 9.0378 (6) Å
<i>b</i> = 11.3939 (8) Å
c = 9.5390 (6) Å
$\beta = 106.133 \ (3)^{\circ}$
$V = 943.60 (11) \text{ Å}^3$
Z = 4

Data collection

Bruker APEXII CCD diffractometer	2662 independent reflections
Radiation source: fine-focus sealed tube	2624 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.014$
ϕ and ω scans	$\theta_{\text{max}} = 69.1^\circ, \ \theta_{\text{min}} = 4.8^\circ$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2008)	$h = -10 \rightarrow 10$
$T_{\min} = 0.858, T_{\max} = 0.941$	$k = -13 \rightarrow 12$
6358 measured reflections	$l = -11 \rightarrow 11$

Refinement

Refinement on F^2

 $wR(F^2) = 0.106$

2662 reflections

181 parameters

1 restraint

methods

S = 1.00

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.035$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_0^2) + (0.088P)^2 + 0.0504P]$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta \rho_{\text{max}} = 0.19 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack (1983), 812 Friedel pairs Primary atom site location: structure-invariant direct Flack parameter: 0.3 (2)

Special details

Geometry. All e.s.d.s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
N1	0.30615 (14)	0.07943 (12)	0.55844 (13)	0.0364 (3)
H1A	0.2841	0.0677	0.6416	0.044*
N2	0.17705 (14)	0.08317 (12)	1.04274 (12)	0.0355 (3)
H2A	0.1857	0.1191	1.1263	0.043*
01	0.23057 (13)	0.17773 (11)	0.34325 (11)	0.0394 (3)
02	0.27727 (15)	0.06614 (13)	0.85203 (12)	0.0498 (3)
C1	0.1354 (2)	0.35161 (16)	0.5354 (2)	0.0541 (5)
H1B	0.0593	0.3932	0.5728	0.081*
H1C	0.1322	0.3819	0.4385	0.081*
H1D	0.2385	0.3638	0.6018	0.081*
C2	0.09866 (19)	0.22154 (14)	0.52483 (17)	0.0383 (4)
H2B	0.1043	0.1912	0.6246	0.046*
C3	-0.0618 (2)	0.19845 (19)	0.4252 (3)	0.0582 (5)
H3A	-0.1379	0.2398	0.4627	0.087*
H3B	-0.0829	0.1140	0.4220	0.087*
H3C	-0.0680	0.2266	0.3267	0.087*
C4	0.21920 (17)	0.15640 (14)	0.46654 (15)	0.0342 (3)
C5	0.43590 (17)	0.01194 (14)	0.53402 (15)	0.0350 (3)
C6	0.56316 (19)	0.09591 (16)	0.5211 (2)	0.0447 (4)
H6A	0.5246	0.1463	0.4354	0.067*
H6B	0.6517	0.0507	0.5105	0.067*
H6C	0.5948	0.1446	0.6090	0.067*
C7	0.3832 (2)	-0.06553 (16)	0.39919 (17)	0.0428 (4)
H7A	0.3015	-0.1183	0.4102	0.064*
H7B	0.4704	-0.1120	0.3879	0.064*
H7C	0.3437	-0.0162	0.3127	0.064*
C8	0.4953 (2)	-0.06704 (17)	0.66758 (18)	0.0466 (4)
H8A	0.4130	-0.1203	0.6759	0.070*
H8B	0.5277	-0.0185	0.7556	0.070*
H8C	0.5832	-0.1129	0.6568	0.070*
С9	0.4281 (2)	0.28811 (19)	0.9455 (3)	0.0580 (5)
H9A	0.5106	0.3416	0.9961	0.087*
H9B	0.3314	0.3318	0.9116	0.087*
H9C	0.4542	0.2529	0.8617	0.087*
C10	0.40976 (18)	0.19187 (15)	1.04972 (17)	0.0380 (3)
H10A	0.3831	0.2280	1.1351	0.046*
C11	0.5592 (2)	0.12282 (19)	1.1036 (2)	0.0519 (4)
H11A	0.6423	0.1759	1.1538	0.078*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supplementary materials

H11B	0.5851	0.0865	1.0204	0.078*
H11C	0.5462	0.0616	1.1714	0.078*
C12	0.28088 (17)	0.10794 (14)	0.97174 (15)	0.0343 (3)
C13	0.04849 (19)	-0.00018 (18)	0.99122 (18)	0.0442 (4)
C14	-0.0612 (2)	0.0436 (2)	0.8479 (2)	0.0677 (6)
H14A	-0.0073	0.0448	0.7718	0.102*
H14B	-0.0963	0.1231	0.8618	0.102*
H14C	-0.1503	-0.0090	0.8183	0.102*
C15	0.1083 (3)	-0.1214 (2)	0.9736 (3)	0.0666 (6)
H15A	0.1785	-0.1470	1.0665	0.100*
H15B	0.1635	-0.1196	0.8985	0.100*
H15C	0.0216	-0.1762	0.9442	0.100*
C16	-0.0360 (3)	-0.0012 (3)	1.1101 (3)	0.0796 (8)
H16B	-0.1251	-0.0539	1.0810	0.119*
H16C	-0.0710	0.0783	1.1234	0.119*
H16A	0.0341	-0.0289	1.2020	0.119*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0423 (7)	0.0407 (7)	0.0305 (5)	0.0064 (6)	0.0173 (5)	0.0040 (5)
N2	0.0331 (6)	0.0460 (8)	0.0282 (5)	-0.0053 (5)	0.0099 (4)	-0.0068 (5)
01	0.0445 (5)	0.0478 (7)	0.0295 (5)	0.0060 (5)	0.0159 (4)	0.0053 (5)
O2	0.0592 (7)	0.0643 (8)	0.0309 (5)	-0.0154 (6)	0.0208 (5)	-0.0115 (5)
C1	0.0598 (11)	0.0418 (10)	0.0689 (12)	-0.0012 (8)	0.0318 (9)	-0.0113 (9)
C2	0.0438 (8)	0.0397 (9)	0.0361 (7)	0.0048 (7)	0.0192 (6)	0.0048 (6)
C3	0.0375 (9)	0.0540 (11)	0.0866 (14)	0.0021 (8)	0.0229 (9)	-0.0120 (10)
C4	0.0373 (7)	0.0372 (8)	0.0306 (6)	-0.0009 (6)	0.0135 (5)	-0.0003 (6)
C5	0.0390 (7)	0.0344 (8)	0.0327 (7)	0.0047 (6)	0.0115 (6)	0.0030 (6)
C6	0.0389 (8)	0.0390 (9)	0.0580 (9)	0.0021 (7)	0.0168 (7)	0.0003 (8)
C7	0.0493 (9)	0.0380 (8)	0.0429 (8)	0.0040 (7)	0.0158 (7)	-0.0035 (7)
C8	0.0488 (9)	0.0495 (10)	0.0419 (8)	0.0126 (8)	0.0134 (6)	0.0090 (8)
С9	0.0492 (10)	0.0450 (10)	0.0796 (13)	-0.0033 (8)	0.0175 (9)	0.0128 (10)
C10	0.0388 (7)	0.0406 (8)	0.0378 (7)	-0.0043 (7)	0.0159 (6)	-0.0073 (6)
C11	0.0429 (9)	0.0549 (11)	0.0519 (9)	-0.0034 (8)	0.0031 (7)	-0.0001 (8)
C12	0.0379 (7)	0.0401 (8)	0.0263 (6)	0.0010 (6)	0.0111 (5)	0.0001 (6)
C13	0.0363 (7)	0.0559 (10)	0.0412 (8)	-0.0106 (7)	0.0120 (6)	-0.0078 (8)
C14	0.0457 (10)	0.0811 (15)	0.0627 (12)	-0.0095 (10)	-0.0075 (8)	-0.0083 (11)
C15	0.0647 (13)	0.0491 (11)	0.0838 (15)	-0.0171 (10)	0.0172 (10)	-0.0049 (10)
C16	0.0562 (12)	0.120 (2)	0.0741 (13)	-0.0411 (14)	0.0373 (10)	-0.0240 (15)

Geometric parameters (Å, °)

N1—C4	1.331 (2)	С7—Н7С	0.9800
N1—C5	1.4739 (19)	С8—Н8А	0.9800
N1—H1A	0.8800	С8—Н8В	0.9800
N2—C12	1.3312 (19)	C8—H8C	0.9800
N2—C13	1.475 (2)	C9—C10	1.520 (3)
N2—H2A	0.8800	С9—Н9А	0.9800

01-64	1 2328 (18)	C9—H9B	0 9800
02—C12	1.2293 (19)	С9—Н9С	0.9800
C1-C2	1 516 (2)	C10—C11	1 523 (2)
C1—H1B	0.9800	C10—C12	1.531 (2)
C1—H1C	0.9800	C10—H10A	1.0000
C1—H1D	0.9800	C11—H11A	0.9800
$C^2 - C^3$	1 519 (2)	C11—H11B	0.9800
C2 - C4	1 544 (2)	C11—H11C	0.9800
С2—Н2В	1 0000	C13—C15	1 509 (3)
C3—H3A	0.9800	C13—C14	1 533 (3)
C3—H3B	0.9800	C13—C16	1.533 (3)
C3—H3C	0.9800	C14—H14A	0.9800
C_{5}	1 523 (2)	C14—H14B	0.9800
C_{5}	1.525 (2)	C14—H14C	0.9800
C_{5}	1.527(2) 1.530(2)	C15—H15A	0.9800
C6H64	0.9800	C15—H15B	0.9800
C6—H6B	0.9800	C15—H15C	0.9800
C6—H6C	0.9800	C16—H16B	0.9800
С7—Н7А	0.9800	C16—H16C	0.9800
С7—Н7В	0.9800	C16—H16A	0.9800
			0.9800
C4—N1—C5	126.13 (11)	C5-C8-H8C	109.5
C4—NI—HIA	116.9	H8A—C8—H8C	109.5
C5—NI—HIA	116.9	H8B—C8—H8C	109.5
C12—N2—C13	124.63 (13)	С10—С9—Н9А	109.5
C12—N2—H2A	117.7	С10—С9—Н9В	109.5
C13—N2—H2A	117.7	Н9А—С9—Н9В	109.5
C2—C1—H1B	109.5	C10—C9—H9C	109.5
C2—C1—H1C	109.5	Н9А—С9—Н9С	109.5
H1B—C1—H1C	109.5	H9B—C9—H9C	109.5
C2—C1—H1D	109.5	C9—C10—C11	110.23 (15)
H1B—C1—H1D	109.5	C9—C10—C12	109.85 (13)
H1C—C1—H1D	109.5	C11—C10—C12	108.96 (14)
C1-C2-C3	111.37 (16)	С9—С10—Н10А	109.3
C1—C2—C4	109.28 (14)	C11—C10—H10A	109.3
C3—C2—C4	109.74 (14)	C12C10H10A	109.3
C1—C2—H2B	108.8	C10-C11-H11A	109.5
С3—С2—Н2В	108.8	C10—C11—H11B	109.5
C4—C2—H2B	108.8	H11A—C11—H11B	109.5
С2—С3—НЗА	109.5	C10—C11—H11C	109.5
С2—С3—Н3В	109.5	H11A—C11—H11C	109.5
НЗА—СЗ—НЗВ	109.5	H11B—C11—H11C	109.5
С2—С3—Н3С	109.5	O2—C12—N2	123.37 (15)
НЗА—СЗ—НЗС	109.5	O2—C12—C10	120.91 (14)
НЗВ—СЗ—НЗС	109.5	N2-C12-C10	115.72 (13)
01—C4—N1	124.59 (14)	N2—C13—C15	110.67 (15)
O1—C4—C2	120.20 (14)	N2—C13—C14	110.00 (16)
N1—C4—C2	115.22 (12)	C15—C13—C14	111.19 (18)
N1—C5—C7	111.09 (12)	N2—C13—C16	105.46 (15)
N1—C5—C6	109.64 (12)	C15-C13-C16	110.0 (2)

supplementary materials

C7—C5—C6	111.15 (14)	C14—C13—C16	109.32 (18)
N1—C5—C8	106.60 (12)	C13—C14—H14A	109.5
C7—C5—C8	108.50 (14)	C13—C14—H14B	109.5
C6—C5—C8	109.75 (13)	H14A—C14—H14B	109.5
С5—С6—Н6А	109.5	C13—C14—H14C	109.5
С5—С6—Н6В	109.5	H14A—C14—H14C	109.5
Н6А—С6—Н6В	109.5	H14B—C14—H14C	109.5
С5—С6—Н6С	109.5	С13—С15—Н15А	109.5
Н6А—С6—Н6С	109.5	С13—С15—Н15В	109.5
H6B—C6—H6C	109.5	H15A—C15—H15B	109.5
С5—С7—Н7А	109.5	С13—С15—Н15С	109.5
С5—С7—Н7В	109.5	H15A—C15—H15C	109.5
Н7А—С7—Н7В	109.5	H15B—C15—H15C	109.5
С5—С7—Н7С	109.5	C13—C16—H16B	109.5
Н7А—С7—Н7С	109.5	C13—C16—H16C	109.5
H7B—C7—H7C	109.5	H16B—C16—H16C	109.5
С5—С8—Н8А	109.5	C13—C16—H16A	109.5
С5—С8—Н8В	109.5	H16B—C16—H16A	109.5
H8A—C8—H8B	109.5	H16C—C16—H16A	109.5
C5—N1—C4—O1	3.9 (3)	C13—N2—C12—O2	2.5 (3)
C5—N1—C4—C2	-175.58 (14)	C13—N2—C12—C10	-176.63 (15)
C1—C2—C4—O1	-63.0 (2)	C9—C10—C12—O2	49.6 (2)
C3—C2—C4—O1	59.4 (2)	C11—C10—C12—O2	-71.2 (2)
C1-C2-C4-N1	116.50 (17)	C9-C10-C12-N2	-131.26 (16)
C3—C2—C4—N1	-121.10 (17)	C11—C10—C12—N2	107.89 (17)
C4—N1—C5—C7	-60.1 (2)	C12—N2—C13—C15	59.7 (2)
C4—N1—C5—C6	63.11 (19)	C12—N2—C13—C14	-63.5 (2)
C4—N1—C5—C8	-178.15 (16)	C12—N2—C13—C16	178.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N1—H1A···O2	0.88	2.03	2.8880 (16)	166
N2—H2A···O1 ⁱ	0.88	2.10	2.9735 (16)	169
Symmetry codes: (i) $x, y, z+1$.				

Fig. 1

